

Version 0.1a

22 Dec 2019

Quake 1 Dev Kit for Dynamic Map Logic

Authored by Qalten

(Qalten#6722)

Quick Usage Tutorial

This document will briefly demonstrate how to setup CPQ entities in a Quake 1

map. For this guide, we will be using TrenchBroom (v2019.6) along with the

q1_cpq.fgd entities definition file included in the dev kit. All references

are as of the version number listed on the front page of this document and

may be superceded or deprecated in future versions.

This document assumes a basic working knowledge of mapping with Quake 1. If

you’re looking for a walkthrough on mapping itself, dumptruck_ds has an

awesome YouTube playlist of videos that can be found ​here​.

Adding Registers

The most crucial entity in CPQ is the ​info_register​, a very simple point
entity that stores a float value (using the predefined ​count​ field).
Add this to your map, and make sure it has a useful ​targetname​. For our
example, we’ll call ours ​quickRegister​. It can be placed anywhere in the map,
and does not have any sort of trigger from being touched.

Setting Registers

Next, we need a way to start putting some values into ​quickRegister​. Let’s
create a ​trigger_setregister​, a brush entity that, when triggered, will set
the current value of ​quickRegister​. As all ​triggers​ ​in CPQ are based off of
the normal Quake triggers (specifically, ​trigger_multiple​), they will share
the same fields and mechanics, along with some new ones. For our new

trigger_setregister​ brush, find the ​target_reg_1​ field and enter
quickRegister​. This establishes that we want to go find the ​quickRegister
register, and however we derive our value, want to set it there. Now all we

need to do is define how we’re setting the value. There are two ways to do

this, one is to simply set the ​count​ field to a number (for example, 5). When
triggered, this brush would simply set ​quickRegister ​to 5.

We want things to be a bit more dynamic, however, so let’s instead ignore

count​ and instead use the ​operationtype​ field. All triggers in CPQ utilize
this new field to determine how they will behave when triggered . Let’s use 1

the default ​operationtype​ 0, which will set the given register to the value
of the activator’s health. In our test scenario, this will be the player.

For debugging purposes, let’s go ahead and enable the second flag in the

spawnflags​, “Print Result as Message” on our ​trigger_setregister​. This will
pop up the result of setting the register as a message in the game.

1 ​We can also modify the ​operationtype​ field itself with ​other​ CPQ triggers to dynamically
change how CPQ triggers behave, but more on that will be found in the included entity
reference.

https://www.youtube.com/watch?v=gONePWocbqA&list=PLgDKRPte5Y0AZ_K_PZbWbgBAEt5xf74aE

At this point, your map should have entities like this:

Feel free to test your map now. If everything is working, you should see

“100” printed in the center of the screen when you walk over the trigger . 2

2 ​There is a known issue right now where a CPQ register-related trigger may take a
moment to respond the first time a map is loaded. This also can result in an error
being displayed if a message is involved. I’m hoping to find a solution for this
soon!

Evaluating Registers

Now, let’s do something with that value. To do so, however, we’ll need to

setup our map to have a bit more functionality. Create a brush that will

damage the player (slime is best as it doesn’t hurt them too fast) and add a

func_door​ that we’ll want to get into. Make sure to give the door a
targetname​, let’s do ​quickDoor​. Here is my arrangement:

Now, let’s add a new CPQ trigger brush, ​trigger_boolexpr​, which is short for
“boolean expression” ie: whether something is ​true ​or ​false​. We’re going to
use this trigger to evaluate the value of our ​quickRegister ​register, and
depending on what it is, open the door. Now, for this setup we don’t need the

trigger_boolexpr​ to actually be physically triggered, so make it small (16​3
perhaps), enable the first ​spawnflag​ (“No Touch”) and put it somewhere tidy.
Let’s go through configuring our new trigger now. The first field we need is

operationtype​, the options of which are different boolean evaluations. Let’s

choose 4 (“Less than”), set ​count​ to 80, ​target_reg_1 ​to ​quickRegister ​and
targetname​ ​to ​checkDoor. ​What we’re doing here is configuring the trigger to
look at the value in ​quickRegister​, and see whether or not it’s less than 80.
Now, we need to set the behavior of the evaluation, what will happen when

it’s true or false. We do this by setting ​target_expr_true​ and/or
target_expr_false​. These values will be the entities we wish to trigger based
on the boolean result. For gameplay purposes, we also have access to

message_expr_true​ and ​message_expr_false​, each of which will display a
message to the player based on the result. All of these fields are optional,

but let’s use a couple of them. Set ​target_expr_true​ to ​quickDoor​, ​and
message_expr_false​ to “Come back with less health...”.

Your ​trigger_boolexpr​ should now look something like this:

We’ve almost finished! All that’s left to do is connect our two triggers, and

modify the brush a bit. On the ​trigger_setregister​, set the ​target​ to
checkDoor. ​CPQ can take advantage of the standard method of activating
triggers by using ​target​ in this way. Finally, adjust the brush of the
trigger_setregister​, so that it covers an area in front of the door where the
player would attempt to stand in. Our tutorial map should now look something

like this:

Give it a test and make sure it works! With everything functioning, the

trigger in front of the door should check the player’s current health, and if

it’s below 80 (achieved through a small dip in the slime), open the door for

them.

Using Registers

Our last part of the tutorial will cover the other way of CPQ can leverage

the value of a register, ​trigger_useregister​. This trigger reads the value of
a register it’s connected to, and uses it to modify something else, or give

the player something. Somewhere in your test map, add a small area of

interest that is distinct from the rest. Here is my version:

What we want to do is make this an area where the player will be granted a

one-time benefit. Create a new brush entity of type ​trigger_useregister​ and
place it where you want your powerup to be activated. Now, let’s setup the

trigger. As before, let’s use the same ​quickRegister​ for ​target_reg_1​, and
for ​operationtype​, let’s select 6 (“Add Player Armor”), and to make this a
one-time benefit set ​wait​ to -1. The result of this will be a single trigger
that, when the player walks onto it will give them an amount of armor equal

to their health when they last passed through the door (as that’s when

trigger_setregister​ is triggered). Obviously in a full map, we’d want to use
lots of different registers and different ways of triggering them, but this

tutorial map gave us a nice and straightforward way of examining the

important entities in CPQ. My version of the ​trigger_useregister​ looks like
this:

The End…?

There’s one more CPQ entity that we didn’t cover here, and that’s

trigger_operator​, which allows you do execute mathematical operations with
register values. I may add that to the tutorial at a later point but to learn

more about it, check out the included Entity Reference Document.

And that does it for the CPQ Quick Tutorial! I will include my version of the

tutorial map (cpq_quickstart.map) in the dev kit package, so feel free to

open it up and use it as a start for your own CPQ-enabled map.

Please reach out to me on Discord if you have any questions or feedback, and

especially​ if you make a map using CPQ! It is my intent to keep a running
database of all CPQ-enabled maps so players and mappers alike can learn from

each other as more features are added to the dev kit.

Thanks for checking out CPQ!

(I used the very handy Prototype WAD for my initial texturing, download it

here​!)

http://khreathor.xyz/site/prototype/

